Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Cell Biosci ; 14(1): 9, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229206

RESUMO

BACKGROUND: Thymidine analogs have long been recognized for their ability to randomly incorporate into DNA. However, the precise mechanisms through which thymidine analogs facilitate cell fate transition remains unclear. RESULTS: Here, we discovered a strong correlation between the dosage dependence of thymidine analogs and their ability to overcome reprogramming barrier. The extraembryonic endoderm (XEN) state seems to be a cell's selective response to DNA damage repair (DDR), offering a shortcut to overcome reprogramming barriers. Meanwhile, we found that homologous recombination repair (HRR) pathway causes an overall epigenetic reshaping of cells and enabling them to overcome greater barriers. This response leads to the creation of a hypomethylated environment, which facilitates the transition of cell fate in various reprogramming systems. We term this mechanism as Epigenetic Reshaping through Damage (ERD). CONCLUSION: Overall, our study finds that BrdU/IdU can activate the DNA damage repair pathway (HRR), leading to increased histone acetylation and genome-wide DNA demethylation, regulating somatic cell reprogramming. This offers valuable insights into mechanisms underlying cell fate transition.

2.
Cell Prolif ; : e13598, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196265

RESUMO

Ecto-mesenchymal cells of mammalian tooth germ develops from cranial neural crest cells. These cells are recognised as a promising source for tooth development and regeneration. Despite the high heterogeneity of the neural crest, the cellular landscape of in vitro cultured cranial neural crest cells (CNCCs) for odontogenesis remains unclear. In this study, we used large-scale single-cell RNA sequencing to analyse the cellular landscape of in vitro cultured mouse CNCCs for odontogenesis. We revealed distinct cell trajectories from primary cells to passage 5 and identified a rare Alx3+/Barx1+ sub-population in primary CNCCs that differentiated into two odontogenic clusters characterised by the up-regulation of Pax9/Bmp3 and Lhx6/Dmp1. We successfully induced whole tooth-like structures containing enamel, dentin, and pulp under the mouse renal capsule using in vitro cultured cells from both cranial and trunk neural crests with induction rates of 26.7% and 22.1%, respectively. Importantly, we confirmed only cells sorted from odontogenic path can induce tooth-like structures. Cell cycle and DNA replication genes were concomitantly upregulated in the cultured NCCs of the tooth induction groups. Our data provide valuable insights into the cell heterogeneity of in vitro cultured CNCCs and their potential as a source for tooth regeneration.

3.
Cell Biosci ; 13(1): 218, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037169

RESUMO

BACKGROUND: L-ascorbic acid (Asc) plays a pivotal role in regulating various biological processes, including somatic cell reprogramming, through multiple pathways. However, it remains unclear whether Asc regulates reprogramming directly or functions through its metabolites. RESULTS: Asc exhibited dual capabilities in promoting reprogramming through both 2,3-diketo-L-gulonic acid (DKG), a key metabolite during Asc degradation, dependent and independent routes. On the one hand, Asc facilitated reprogramming by promoting cell proliferation and inducing the conversion from pre-induced pluripotent stem cells (pre-iPSCs) to iPSCs through DKG-independent pathways. Additionally, Asc triggered mesenchymal-epithelial transition (MET) and activated glycolysis via DKG-dependent mechanisms. Notably, DKG alone activated a non-canonical tricarboxylic acid cycle characterized by increased succinate, fumarate, and malate. Consequently, this shift redirected oxidative phosphorylation toward glycolysis and induced MET. Moreover, owing to its antioxidant capabilities, Asc directly inhibited glycolysis, thereby preventing positive feedback between glycolysis and epithelial-mesenchymal transition, ultimately resulting in a higher level of MET. CONCLUSION: These findings unveil the intricate functions of Asc in the context of reprogramming. This study sheds light on the DKG-dependent and -independent activities of Asc during reprogramming, offering novel insights that may extend the application of Asc to other biological processes.

4.
Cell Biosci ; 13(1): 191, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838693

RESUMO

BACKGROUND: c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown. RESULTS: Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient. CONCLUSIONS: The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions.

5.
Curr Opin Genet Dev ; 83: 102110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722148

RESUMO

Oocyte features the unique capacity to reprogram not only sperm but also somatic nuclei to totipotency, yet the scarcity of oocytes has hindered the exploration and application of their reprogramming ability. In the meanwhile, the formation of oocytes, which involves extensive intracellular alterations and interactions, has also attracted tremendous interest. This review discusses developmental principles and regulatory mechanisms associated with ooplasm reprogramming and oocyte formation from a genetic perspective, with knowledge derived from mouse models. We also discuss future directions, especially to address the lack of insight into the regulatory networks that shape the identity of female germ cells or drive transitions in their developmental programs.


Assuntos
Técnicas de Transferência Nuclear , Sêmen , Camundongos , Masculino , Feminino , Animais , Núcleo Celular/genética , Oócitos , Reprogramação Celular/genética
6.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604584

RESUMO

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-jun , Animais , Humanos , Camundongos , Diferenciação Celular , Cromatina/genética , Genes jun , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-jun/metabolismo
7.
Nat Commun ; 14(1): 4599, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524711

RESUMO

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Assuntos
Organogênese , Transcriptoma , Animais , Camundongos , Organogênese/genética , Perfilação da Expressão Gênica , Embrião de Mamíferos , Células-Tronco , Mamíferos
8.
Nat Commun ; 14(1): 3943, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402734

RESUMO

Mechanosensitive (MS) ion channels are a ubiquitous type of molecular force sensor sensing forces from the surrounding bilayer. The profound structural diversity in these channels suggests that the molecular mechanisms of force sensing follow unique structural blueprints. Here we determine the structures of plant and mammalian OSCA/TMEM63 proteins, allowing us to identify essential elements for mechanotransduction and propose roles for putative bound lipids in OSCA/TMEM63 mechanosensation. Briefly, the central cavity created by the dimer interface couples each subunit and modulates dimeric OSCA/TMEM63 channel mechanosensitivity through the modulating lipids while the cytosolic side of the pore is gated by a plug lipid that prevents the ion permeation. Our results suggest that the gating mechanism of OSCA/TMEM63 channels may combine structural aspects of the 'lipid-gated' mechanism of MscS and TRAAK channels and the calcium-induced gating mechanism of the TMEM16 family, which may provide insights into the structural rearrangements of TMEM16/TMC superfamilies.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Animais , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Lipídeos/química , Mamíferos/metabolismo
9.
Nat Commun ; 14(1): 2846, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37208322

RESUMO

Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Histona Desacetilases/genética , Cromatina , Reprogramação Celular/genética
10.
Cell Biosci ; 13(1): 88, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194020

RESUMO

BACKGROUND: Extended pluripotent stem cells (EPSCs) can contribute to both embryonic and trophectoderm-derived extraembryonic tissues. Therefore, EPSCs have great application significance for both research and industry. However, generating EPSCs from human somatic cells remains inefficient and cumbersome. RESULTS: In this study, we established a novel and robust EPSCs culture medium OCM175 with defined and optimized ingredients. Our OCM175 medium contains optimized concentration of L-selenium-methylcysteine as a source of selenium and ROCK inhibitors to maintain the single cell passaging ability of pluripotent stem cells. We also used Matrigel or the combination of laminin 511 and laminin 521(1:1) to bypass the requirement of feeder cells. With OCM175 medium, we successfully converted integration-free iPSCs from easily available human Urine-Derived Cells (hUC-iPSCs) into EPSCs (O-IPSCs). We showed that our O-IPSCs have the ability to form both intra- and extra- embryonic chimerism, and could contribute to the trophoblast ectoderm lineage and three germ layer cell lineages. CONCLUSIONS: In conclusion, our novel OCM175 culture medium has defined, optimized ingredients, which enables efficient generation of EPSCs in a feeder free manner. With the robust chimeric and differentiation potential, we believe that this system provides a solid basis to improve the application of EPSCs in regenerative medicine.

11.
FEBS J ; 290(15): 3896-3909, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013936

RESUMO

ZBTB7A, a transcription factor containing a tandem array of four Cys2-His2 zinc fingers (ZFs), is vital for multiple physiological events through directional binding to different genomic loci. Our previously determined crystal structure of ZBTB7A in complex with a GCCCCTTCCCC sequence revealed that all four ZFs (ZF1-4) are involved in binding to γ-globin -200 gene element to repress fetal haemoglobin expression. Recently, it has been reported that ZBTB7A drives primed-to-naïve transition (PNT) of pluripotent stem cells through binding to a 12-bp consensus sequence ([AAGGACCCAGAT], referred to as PNT-associated sequence). Here, we report a crystal structure of ZBTB7A ZF1-3 in complex with the PNT-associated sequence. The structure shows that ZF1 and ZF2 primarily contribute to recognizing the GACCC core sequence mimicking the half part (GCCCC) of γ-globin -200 gene element via specific hydrogen bonding and van der Waals contacts. The mutations of key residues in ZF1-2 remarkably reduce their binding affinities for the PNT-associated sequence in vitro and cannot restore epiblast stem cells to the naïve pluripotent state in vivo. Collectively, our studies demonstrate that ZBTB7A mainly employs its ZF1-2 to recognize the PNT-associated sequence but recognizes γ-globin -200 gene element via ZF1-4, providing insights into the molecular mechanism for the diversity of ZBTB7A's genomic localization.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Pluripotentes , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , gama-Globinas/genética , Linhagem Celular Tumoral , Sequência de Aminoácidos , Dedos de Zinco/genética , Células-Tronco Pluripotentes/metabolismo
12.
Cell Res ; 33(6): 421-433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085732

RESUMO

The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.


Assuntos
Pulmão , Alvéolos Pulmonares , Humanos , Pulmão/metabolismo , Diferenciação Celular/genética , Embrião de Mamíferos , Análise de Sequência de RNA
13.
Nat Commun ; 14(1): 1470, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928654

RESUMO

The transmembrane voltage gradient is a general physico-chemical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of the selectivity filter and ion permeation pathway with delayed rectifier properties and Cole-Moore effect at the atomic level. Mechanistically, a short S4-S5 linker is coupled with the constrict sites to mediate voltage transducing in a non-domain-swapped configuration, resulting transitions for constrict sites of F464 and Q472 from gating to open state stabilizing for voltage energy transduction. Meanwhile, an additional potassium ion occupied at positions S6 confers the delayed rectifier property and Cole-Moore effects. These results provide insight into voltage transducing and potassium current across membrane, and shed light on the long-sought Cole-Moore effects.


Assuntos
Canais de Potássio Éter-A-Go-Go , Ativação do Canal Iônico , Humanos , Microscopia Crioeletrônica , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/fisiologia , Ativação do Canal Iônico/fisiologia , Potássio/metabolismo , Potássio/fisiologia
14.
EMBO Mol Med ; 15(4): e17307, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36896594

RESUMO

Neural stem cells (NSCs) are shielded from viral infection by interferon (IFN) defense. As individuals age, activation of NSC decreases with a significant decline of stemness marker Sex-determining region Y box 2 (Sox2) while IFN signaling enhances (Kalamakis et al, 2019). Given that low-level type-I IFN under normal physiological conditions can promote dormant hematopoietic stem cell differentiation (Baldridge et al, 2010), whether there is an inner connection between IFN signaling and NSC function remains elusive. In this issue of EMBO Molecular Medicine, Carvajal Ibanez et al (2023) reveal that IFN-ß, a type-I interferon, induces cell-type-specific interferon-stimulated genes (ISGs) and regulates global protein synthesis by orchestrating mTOR1 activity and stem cell cycle that retain NSCs at the G0 phase and repress Sox2 expression. As a consequence, NSCs exit the activation state and become inclined to differentiation.


Assuntos
Interferons , Células-Tronco Neurais , Humanos , Regeneração Nervosa , Células-Tronco Neurais/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Envelhecimento
15.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36813575

RESUMO

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Assuntos
GABAérgicos , Receptores da Colecistocinina , Masculino , Feminino , Camundongos , Animais , GABAérgicos/farmacologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos Knockout , Interneurônios , Colecistocinina , Ácido gama-Aminobutírico/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Acoplados a Proteínas G/genética
16.
Cell Biosci ; 12(1): 212, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587229

RESUMO

BACKGROUND: Pathogenic mutations in WRN are a cause of premature aging disease Werner syndrome (WS). Besides accelerated aging phenotypes and cancer predisposition, patients with WS also display underdevelopment in the skeletal system, characterized by short stature, light body weight and unusually thin extremities. The reasons for these developmental defects are not completely understood and the underlying molecular mechanism remains to be elucidated. RESULTS: In this study, WRN was found to modulate transcription of short stature homeobox gene SHOX. Loss of WRN resulted in insufficient expression of SHOX, the gene dose of which is critical for driving chondrocyte differentiation. WRN could bind the G-quadruplex (G4) structures in the SHOX promoter and stimulate transcription. Aberrant formation of G4 structures in WRN-deficient cells impeded normal transcription of SHOX, thus resulting in impaired chondrogenesis. Chondrogenesis could be rescued by overexpression of WRN helicase or SHOX, suggesting that SHOX is a downstream target of WRN. Gene editing of the G4 structures in the SHOX promoter could increase SHOX expression, therefore rescuing the impaired chondrogenesis in WRN-deficient cells. CONCLUSIONS: Our data suggest that dysgenesis of the developing bone in WS might be caused by SHOX insufficiency. Aberrant formation of G4 structures in SHOX promoter suppresses SHOX expression and impairs chondrogenesis. Targeted mutagenesis in the G4 structures enhances SHOX expression and thus providing an opportunity to rescue the chondrogenic defect.

17.
Sci Bull (Beijing) ; 67(11): 1154-1169, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545982

RESUMO

The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.


Assuntos
Células-Tronco Mesenquimais , Dente , Camundongos , Animais , Odontogênese/genética , Germe de Dente , Epitélio
18.
Cell Rep ; 41(11): 111791, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516776

RESUMO

Transposable elements (TEs) are the major sources of lineage-specific genomic innovation and comprise nearly half of the human genome, but most of their functions remain unclear. Here, we identify that a series of endogenous retroviruses (ERVs), a TE subclass, regulate the transcriptome at the definitive endoderm stage with in vitro differentiation model from human embryonic stem cell. Notably, these ERVs perform as enhancers containing binding sites for critical transcription factors for endoderm lineage specification. Genome-wide methylation analysis shows most of these ERVs are derepressed by TET1-mediated DNA demethylation. LTR6B, a representative definitive endoderm activating ERV, contains binding sites for FOXA2 and GATA4 and governs the primate-specific expression of its neighboring developmental genes such as ERBB4 in definitive endoderm. Together, our study proposes evidence that recently evolved ERVs represent potent de novo developmental regulatory elements, which, in turn, fine-tune species-specific transcriptomes during endoderm and embryonic development.


Assuntos
Retrovirus Endógenos , Animais , Humanos , Retrovirus Endógenos/genética , Endoderma , Ativação Transcricional , Primatas , Genes Controladores do Desenvolvimento , Desmetilação , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
19.
Nat Commun ; 13(1): 7275, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434000

RESUMO

AAV-delivered CRISPR/Cas9 (AAV-CRISPR) has shown promising potentials in preclinical models to efficiently insert therapeutic gene sequences in somatic tissues. However, the AAV input doses required were prohibitively high and posed serious risk of toxicity. Here, we performed AAV-CRISPR mediated homology-independent knock-in at a new target site in mAlb 3'UTR and demonstrated that single dose of AAVs enabled long-term integration and expression of hF9 transgene in both adult and neonatal hemophilia B mice (mF9 -/-), yielding high levels of circulating human Factor IX (hFIX) and stable hemostasis restoration during entire 48-week observation period. Furthermore, we achieved hemostasis correction with a significantly lower AAV dose (2 × 109 vg/neonate and 1 × 1010 vg/adult mouse) through liver-specific gene knock-in using hyperactive hF9R338L variant. The plasma antibodies against Cas9 and AAV in the neonatal mice receiving low-dose AAV-CRISPR were negligible, which lent support to the development of AAV-CRISPR mediated somatic knock-in for treating inherited diseases.


Assuntos
Hemofilia B , Camundongos , Animais , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Edição de Genes , Sistemas CRISPR-Cas/genética , Formação de Anticorpos , Vetores Genéticos/genética , Hemostasia , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...